If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x+30x^2=0
a = 30; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·30·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*30}=\frac{-16}{60} =-4/15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*30}=\frac{0}{60} =0 $
| h+1/5=3/5 | | 2x-3+3x+9/2=33 | | -6(8-9)/2=x | | 4^2x+5=7^x+5 | | 1-x-x=0 | | 2x-3+3x-9/2=33 | | 36+x/2=19 | | 36+x=19 | | 3x=(x+42) | | x=2x-4=9 | | -4.5p=22.5 | | -3/4x=15/6 | | 2(1)+2(l)=24 | | 4(240+p)=180 | | t^2-5t=6 | | 2x+0.5=0 | | 0=-(t^2-t-30) | | w=4w–9≥-1 | | -3(x+4)=-2(x-6) | | 4y=y=3 | | 3(2x=1)=3x-3 | | -2=x=2 | | 2x+1/3x-4=4x-7/6x+8 | | 5×p=30 | | 30=t^2-t | | 4x+161/5=65 | | 3/5(n+12)=21 | | -16x-14=-126 | | 5(4w+4)=-10 | | 2(x+2)+6=62–4x–3-x | | 6=-3/8v | | 1/3x+x=24 |